Potassium-argon dating, method of determining the time of origin of rocks by measuring the ratio of radioactive argon to radioactive potassium in the rock. This dating method is based upon the decay of radioactive potassium-40 to radioactive argon-40 in minerals and rocks; potassium-40 also decays to calcium-40.

## What is the purpose of potassium argon dating?

Potassium-argon dating, method of determining the time of origin of rocks by measuring the ratio of radioactive argon to radioactive potassium in the rock. This dating method is based upon the decay of radioactive potassium-40 to radioactive argon-40 in minerals and rocks; potassium-40 also decays to calcium-40.

## What is potassium-argon dating used for?

Potassium-argon dating, method of determining the time of origin of rocks by measuring the ratio of radioactive argon to radioactive potassium in the rock. This dating method is based upon the decay of radioactive potassium-40 to radioactive argon-40 in minerals and rocks; potassium-40 also decays to calcium-40.

## Where is potassium argon dating used?

The potassium-argon dating method has been used to measure a wide variety of ages. The potassium-argon age of some meteorites is as old as 4,500,000,000 years, and volcanic rocks as young as 20,000 years old have been measured by this method.

## How long does potassium argon dating?

The potassium-argon age of some meteorites is as old as 4,500,000,000 years, and volcanic rocks as young as 20,000 years old have been measured by this method. This is possible in potassium-argon (K-Ar) dating, for example, because most minerals do not take argon